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A symbiotic ecosystem with Gompertz self-regulation and with adaptive competition between populations is
studied by means of a N-species Lotka-Volterra stochastic model. The influence of fluctuating environment on
the carrying capacity of a population is modeled as a dichotomous noise. The study is a follow up of previous
investigations of symbiotic ecosystems subjected to the generalized Verhulst self-regulation �Phys. Rev. E 69,
061106 �2004�; 65, 051108 �2002��. In the framework of mean-field approximation the behavior of the
solutions of the self-consistency equation for a stationary system is examined analytically in the full phase
space of system parameters. Depending on the mutual interplay of symbiosis and competition of species,
variation of noise parameters �amplitude, correlation time� can induce doubly unidirectional discontinuous
transitions as well as single unidirectional discontinuous transitions of the mean population size.
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The catastrophic shifts sometimes observed in natural
ecosystems, which are due to gradual secular changes in en-
vironmental parameters are currently being actively investi-
gated �for a review, see �1��. Inspired by the fact that external
multiplicative noise can induce multistability as well as first-
order phase transitions in some complex systems �2�, the
authors of Refs. �3,4� have shown that in a symbiotic eco-
system, described by a N-species Lotka-Volterra model with
the generalized Verhulst self-regulation mechanism �GVM�,
with an exponent ��1, colored fluctuations of carrying ca-
pacities of populations can induce bistability and produce
abrupt changes between the corresponding stable states.

Although the GVM with ��1 is useful in modeling
many actual ecological communities, there are some biologi-
cally important systems, such as bacterial populations, where
the Gompertz law fits population data better than the GVM
�5�. Moreover, the long generation times of most organisms
and the complexity of the natural environment have fostered
interest in ecological experiments based on bacterial popula-
tions �6�, �see also �7� for a review�, where the Gompertz law
may be essential.

Thus motivated, in this paper we consider an N-species
Lotka-Volterra model of a symbiotic ecological system with
the Gompertz self-regulation mechanism. For the sake of
mathematical simplicity, the effect of fluctuating environ-
ment on the growth of populations is modeled as dichoto-
mous fluctuations of the carrying capacity. We study the
model using a mean-field approach, focusing on colored-
noise-induced discontinuous transitions. In addition, we
show that the behavior of models with the GVM ��1 re-
sembles that with the Gompertz law in many features—e.g.,
the qualitative picture of noise-induced discontinuous transi-
tions is the same.

The main contributions of this paper are as follows: �i�
The dependence of noise-induced discontinuous transitions
on the intensities of symbiosis and adaptive competition is
investigated in detail and illustrated by a phase diagram. �ii�

We establish two types of noise-induced discontinuous
transitions—doubly unidirectional transitions �DUT� and
single unidirectional transitions �SUT�—and give the neces-
sary and sufficient conditions for the appearance of such ef-
fects. To our knowledge, the appearance of a noise-induced
SUT �e.g., an increase in noise amplitude can cause a cata-
strophic fall in the size of populations, while by decreasing
the noise amplitude no opposite transitions can occur� in
models of ecosystems without extinction is a new noise-
induced effect. �iii� We also show that, as compared with
models with GVM ��1, models with Gompertz law, as well
as with the GVM ��1, display a more sensitive response to
environmental fluctuations, at that the vulnerability of the
modeled ecosystems to variations of fluctuations’ amplitude
is higher at lower noise correlation times.

As in our previous works �3,4�, the present model is based
on the N-species generalized Lotka-Volterra equation with
symbiotic interaction

d

dt
Xi�t� = f i„Xi�t�… +

J

N
Xi�t��

j�i

Xj�t� , �1�

where Xi�t��i=1,… ,N� is the population density of the ith
species at time t �clearly Xi�t��0� and J�0 is the coupling
constant that describes the intensity of the symbiotic interac-
tion. The function f i�X� describes the development of the ith
species without any interaction with other species. As dis-
cussed above, we consider the Gompertz model for self-
regulation

f i�x� = − �ix ln� x

Ki
� , �2�

where Ki�0 is the saturation point of population density �the
carrying capacity� and �i is the growth parameter of the ith
species �8�. On the basis of Refs. �3,4,9� we consider all
species to be equivalent, so that the parameters of the eco-
system �or metapopulation� are independent of the species,
i.e., �i=�. Random interaction with the environment �cli-
mate, diseases, etc.� is taken into account by introducing a*Electronic address: ako@audentes.ee
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dichotomous noise in f i�X�. From now on we shall use fluc-
tuations of the carrying capacity

Ki = K�1 −
�

N
�
j�i

Xj�t���1 + aZi�t�� , �3�

where the noise Zi�t� is assumed to be a dichotomous Mar-
kovian process �10� consisting of jumps between two values
z=−1, 1, and ��0 is the adaptation parameter. The mean
value of Zi�t� and the correlation function are �Zi�t�	
=0, �Zi�t� ,Zj�t��	=�ijexp�−	
t− t�
�, where the switching rate
	 is the reciprocal of the noise correlation time 	=1/
c. Ob-
viously, model �1� with Eqs. �2� and �3� is biologically mean-
ingful only if 
a
�1 �the carrying capacity Ki is non-
negative�. The factor �1− �� /N��Xj�t�� in Eq. �3� mimics the
decrease of the carrying capacity caused by adaptive compe-
tition of populations for common resources, such as food or
living space �see also �11��. A need for the consideration of
interspecies adaptive competition in models with Gompertz
self-regulation of biological relevance arises from the fol-
lowing circumstance: In the absence of adaptation ��=0�, for
all J�0 the corresponding deterministic model �without
noise� is characterized by instability; that means that within a

finite time the site average X̄= �1/N��Xi�t� grows to infinity
�9�. More particularly, if J�Jc=� / �eK�, there are two pos-
sible regimes, depending on the initial distribution of the
species: Either the system evolves to an equilibrium state

with a finite X̄, or to an unstable state; if J�� / �eK�, then the

system is unstable at all initial distributions, i.e., X̄→�. For
biologically relevant models any growth of an expanding
population must eventually be stopped by shortage of re-
sources. The addition of adaptation to the model would regu-
late the behavior of the system so that an unstable state of the
system will be replaced by a stable stationary state. Notably,
an interplay between competition and symbiosis can cause
bistability in a deterministic case, i.e., if 4���J�4� / �e2K�.
Note that a qualitatively analogous situation takes place in
models with the GVM, f i�x�=�x�1− �x /Ki���, with 0��
�1. In this case, in the absence of adaptation ��=0� no
stable state occurs when J�Jc=��K−1�1−���1/��−1, while
the presence of adaptation of the form �3� can cause bistabil-
ity in 4���� �1−��2J�4��K−1��1−�� / �1+����1/��+1. In
what follows, we will, without loss of generality, use dimen-
sionless units with K=1, �=1 and 0�a�1. As the param-
eter a can be interpreted as the noise amplitude, the behavior
of the model does not depend on sign of a.

We follow the mean-field approximation scheme de-
scribed in Ref. �4�. The mean-field approximation can be

reached by replacing the site average X̄ by the statistical
average �X	. Now, with the help of calculations analogous to
those considered in Ref. �4� we get, in the stationary case, the
self-consistency equation in the following form:

�X	 = �1 − ��X	�F�	,a�exp�J�X	� , �4�

where

F�	,a� ª �1 − a���	

2
,	;ln�1 + a

1 − a
�� �5�

and � is the confluent hypergeometric function.
In Fig. 1 we have plotted different solutions of the self-

consistency Eq. �4� for the mean value �X	 as a function of
the noise amplitude a and the coupling constant J at the
system parameters 	=5, �=0.08, showing that three types of
graphs �X	 versus a emerge. In the case of curve �a� a hys-
teresis for �X	 appears. There are two critical values for the
noise amplitude, a1=0.485 and a2=0.972, at which a slight
variation of a induces discontinuous transitions of the mean
population density �X	. In this case a variation of the noise
amplitude can cause discontinuous transitions of �X	 in both
directions, i.e., a jump from a state with a bigger number of
individuals to that with a lesser one and vice versa. Curve �c�
is described with a monotonically decreasing function as the
noise amplitude a increases. Obviously the system is
monostable and discontinuous transitions cannot occur. An-
other interesting example admitting discontinuous transitions
is the case depicted in Fig. 1 with curve �b�. A variation of a
can cause an abrupt transition from a stable state of a bigger
number of individuals to one of a lesser number, while the
opposite cannot occur.

Figure 2 shows phase diagrams in the J−a plane at 	
=10. It is remarkable that the qualitative forms of phase dia-
grams �see Figs. 2�a� and 2�b�� depend only on the value of
the adaptation parameter �. Notably the shaded common re-
gion of the two stable phases in Fig. 2�a� demonstrates a
phenomenon of noise-induced bistability; in this case �
�1/e2 and the corresponding deterministic system �i.e.,
without noise� is monostable. As the noise amplitude a de-
creases, the multiphase region narrows down and disappears
at the value of the amplitude ac=0.451. The critical value ac
of the noise amplitude is the solution of the transcendental
equation F�	 ,a�=1/ ��e2�, �see Eq. �5��. In the case of fixed
values of � the critical parameter ac

2 increases monotonically

FIG. 1. Mean value of the population density �X	 versus the
noise amplitude a at different values of the system parameter J. The
noise correlation time 
c=1/	=0.2 and the adaptation parameter
�=0.08. Solid line �1�: J=0.5. Dashed-dotted line �2�: J=0.42.
Dashed line �3�: J=0.3. For all curves the dotted lines depict the
unstable solutions of the self-consistency Eq. �4�, the other lines
depict the stable solutions of Eq. �4�.
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from ac min
2 =1−1/ �e4�2� to 1 if the noise correlation time


c=1/	 increases from zero to infinity. The tendency appar-
ent in Fig. 2 as we compare the borders of the common
regions in the case 	=10 with those of the case 	=2, namely,
a decrease of the values of noise amplitude at which the
discontinuous transitions occur as the switching rate 	 grows,
also takes place in the general case, i.e., for an arbitrary 	.
The boundary of the common region of the two stable phases
Ji�a� and i=1, 2 is given by the following equations:

Ji�a� =
��
i + 1�2


i
, 
ie

−
i = �eF�	,a� , �6�

where 
1� �0,1� and 
2� �1,��. Relying on the J−a phase
diagram and on the formulas �5� and �6�, one can find the
necessary and sufficient conditions for the emergence of dis-
continuous transitions due to noise amplitude variations. �i�
SUT occur only if ��1/e2 and J2�0��J�J1�0�. The critical
values of the coupling parameter J1�0� and J2�0� are deter-
mined by Eq. �6�. �ii� The sufficient and necessary conditions
for DUT are J�J1�0� if ��1/e2, and J�4� if ��1/e2. �iii�
Discontinuous transitions disappear, i.e., the system is
monostable for all values of noise amplitude, in the cases �
�1/e2, J�J2�0� and ��1/e2, J�4�. It is remarkable that
the sufficient and necessary conditions for the existence of

discontinuous transitions versus a are independent of corre-
lation time.

Discontinuous transitions can also occur when the noise
correlation time 
c=1/	 is chosen as the control parameter.
When using Eq. �4� to investigate the dependence of �X	 on
the correlation time 
c, five different types of the graphs �X	
versus 	 emerge. We interpret these five qualitatively differ-
ent shapes of the graphs as different “phases” in the phase
space �� ,J� �the phases �a�–�e� in Fig. 3�. Phase �a�: The
system exhibits SUT from a lesser number of individuals to a
bigger number. Phase �b�: The phenomenon of DUT appears.
Phase �c�: The system also exhibits SUT, but from a bigger
number of individuals to a lesser one. Phase �d�: The system
is bistable for all values of 	. No transitions between stable
states occur. Phase �e�: The system is monostable for all
values of 	.

Note that the coordinates �� ,J� of point B monotonically
decrease from �1/e2 ,4 /e2� to �0,1 /e� as the noise amplitude
a increases from 0 to 1. Therefore an increase of the noise
amplitude causes an increase of the domain �c�, where a SUT
from a stable state of a bigger numbers of individuals to a
lesser number takes place. An important observation now is
that the growth of noise amplitude will increase the region of
the phase space �� ,J�, where discontinuous transitions in 	
are possible �12�. In particular, the necessary condition for
the appearance of discontinuous transitions is 4��J
�4/ �e2�1−a2�.

In stationary mean-field approximation, the influence of
fluctuations on an ecosystem can be biologically interpreted
as a reduction of the carrying capacity K of a single species
in the original �unscaled� setup. The reduced �effective� car-
rying capacity Keff reads: Keff�	 ,a�=KF�	 /� ,a�, where
F�	 ,a� is given by Eq. �5�. Thus, our model with noise is
equivalent to a deterministic model with the carrying capac-
ity Keff, where the nonlinear interplay between symbiosis and
competition can cause bistability if 4���J
�4� / �e2Keff�	 ,a��. The possibility of a noise-induced tran-
sition is now obvious.

Bearing in mind Eq. �21� presented in Ref. �4�, it can be
shown that in symbiotic ecosystems with adaptive competi-

FIG. 2. �J ,a� phase diagrams at different values of the adapta-
tion parameter �. The noise correlation time 
c=0.1. The shaded
regions correspond to the common regions of two phases. The bor-
ders of the common region J1�a� and J2�a� are computed from Eqs.
�5� and �6�. Both functions J1�a� and J2�a� tend to infinity as noise
amplitude increases �a→1�. In the panels the dashed lines depict
the borders of the common regions at the noise correlation time

c=0.5. �a� The case of ��1/e2 , �=0.15. �b� The case of �
�1/e2 , �=0.08.

FIG. 3. �� ,J� phase diagram for the dependence of the popula-
tion density �X	 on 	 in the case of a=0.9. Discontinuous transitions
occur in the regions �a�, �b�, and �c�. The borders of the domains are
determined by Eqs. �5� and �6�. More details in the text �see also
Ref. �12��.
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tion the general picture of noise-induced SUT and DUT �see
also the phase diagram in Fig. 3� is restricted not only to
models with Gompertz self-regulation, but is qualitatively
true for a broad class of models with the GVM, 0���1.
The phenomenon of colored-noise-induced bistability in
symbiotic ecosystems has been studied in �3,4�. However, in
contrast to ours, in those models the authors have chosen a
GVM with ��1. Perhaps the most fundamental difference is
that the corresponding deterministic models �without noise�
are monostable, at any values of the parameters J and �. As a
consequence the discontinuous transitions versus noise am-
plitude �or correlation time� are doubly unidirectional—the
effect of SUT disappears. Moreover, we emphasize that for
the GVM with ��1 DUT appear only if the noise amplitude
is greater than the threshold value a0c����0; in the model
presented here such a restriction is absent. Hence, ecosys-
tems with the Gompertz law �or with the GVM ��1� are
more sensitive to environmental fluctuations than ecosystems
with the GVM ��1.

In the case considered here nonlinear interplay between
symbiosis and competition is important, and an increase of
noise amplitude can, under certain conditions, cause a cata-
strophic fall in the size of populations, while by decreasing
the noise amplitude an opposite transition cannot be brought

about. As in long time interval, low sizes of populations face
a high probability of extinction, the consequence of SUT can
prove fatal to the ecosystem. This feature of symbiotic eco-
systems can provide a possible scenario for some cata-
strophic shifts of population sizes observed in nature �1�,
e.g., in the case of coral reefs, where symbiosis is essential
�13�. Furthermore, the next interesting finding is that critical
noise amplitudes �the amplitudes at which discontinuous
transitions appear� decrease if noise correlation time de-
creases. On the basis of this result, one may formulate the
conjecture that in symbiotic ecosystems with Gompertz law,
as well as with the GVM ��1, discontinuous transitions
appear with a greater probability if the noise correlation time
is shorter.

Finally, we believe that the model and the results dis-
cussed here are of interest also in other fields where Gomp-
ertz self-regulation is relevant in system modeling, e.g, in
market forecasting �14�, in oncology �15�, in bioeconomics
�16�, and in sociology, e.g., in the theory of cultural diffusion
�17�.
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